Angular-momentum--mass inequality for axisymmetric black holes.

نویسنده

  • Sergio Dain
چکیده

The inequality square root J <or=m is proved for vacuum, asymptotically flat, maximal, and axisymmetric data close to extreme Kerr data. The physical significance of this inequality and its relation to the standard picture of the gravitational collapse are discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Proof of the angular momentum-mass inequality for axisymmetric black holes

We prove that extreme Kerr initial data set is a unique absolute minimum of the total mass in a (physically relevant) class of vacuum, maximal, asymptotically flat, axisymmetric data for Einstein equations with fixed angular momentum. These data represent nonstationary, axially symmetric, black holes. As a consequence, we obtain that any data in this class satisfy the inequality √ J ≤ m, where ...

متن کامل

Proof of the Mass-angular Momentum Inequality for Bi-axisymmetric Black Holes with Spherical Topology

We show that extreme Myers-Perry initial data realize the unique absolute minimum of the total mass in a physically relevant (Brill) class of maximal, asymptotically flat, bi-axisymmetric initial data for the Einstein equations with fixed angular momenta. As a consequence, we prove the mass-angular momentum inequality in this setting for 5-dimensional spacetimes. That is, all data in this class...

متن کامل

Existence of black holes due to concentration of angular momentum

We present a general sufficient condition for the formation of black holes due to concentration of angular momentum. This is expressed in the form of a universal inequality, relating the size and angular momentum of bodies, and is proven in the context of axisymmetric initial data sets for the Einstein equations which satisfy an appropriate energy condition. A brief comparison is also made with...

متن کامل

The Positive Mass Theorem for Multiple Rotating Charged Black Holes

In this paper a lower bound for the ADM mass is given in terms of the angular momenta and charges of black holes present in axisymmetric initial data sets for the Einstein-Maxwell equations. This generalizes the mass-angular momentum-charge inequality obtained by Chrusciel and Costa to the case of multiple black holes. We also weaken the hypotheses used in the proof of this result for single bl...

متن کامل

Proof of the (local) angular momemtum-mass inequality for axisymmetric black holes

We prove that for any vacuum, maximal, asymptotically flat, axisymmetric initial data for Einstein equations close to extreme Kerr data, the inequality √ J ≤ m is satisfied, where m and J are the total mass and angular momentum of the data. The proof consists in showing that extreme Kerr is a local minimum of the mass.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review letters

دوره 96 10  شماره 

صفحات  -

تاریخ انتشار 2006